4,020 research outputs found

    Quasiconformality and mass

    Full text link
    We identify universal quasiconformal (walking) behaviour in non-Abelian gauge field theories based on the mass-dependent all-order beta-function introduced in arXiv:0908.1364. We find different types of walking behaviour in the presence of (partially) massive species. We employ our findings to the construction of candidate theories for dynamical electroweak symmetry breaking by walking technicolour.Comment: 16 pages, 8 figures

    Recursive Calculation of Effective Potential and Variational Resummation

    Full text link
    We set up a method for a recursive calculation of the effective potential which is applied to a cubic potential with imaginary coupling. The result is resummed using variational perturbation theory (VPT), yielding an exponentially fast convergence.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/350

    Exotic Statistics for Ordinary Particles in Quantum Gravity

    Full text link
    Objects exhibiting statistics other than the familiar Bose and Fermi ones are natural in theories with topologically nontrivial objects including geons, strings, and black holes. It is argued here from several viewpoints that the statistics of ordinary particles with which we are already familiar are likely to be modified due to quantum gravity effects. In particular, such modifications are argued to be present in loop quantum gravity and in any theory which represents spacetime in a fundamentally piecewise-linear fashion. The appearance of unusual statistics may be a generic feature (such as the deformed position-momentum uncertainty relations and the appearance of a fundamental length scale) which are to be expected in any theory of quantum gravity, and which could be testable.Comment: Awarded an honourable mention in the 2008 Gravity Research Foundation Essay Competitio

    Low-Energy Effective Action in Non-Perturbative Electrodynamics in Curved Spacetime

    Full text link
    We study the heat kernel for the Laplace type partial differential operator acting on smooth sections of a complex spin-tensor bundle over a generic nn-dimensional Riemannian manifold. Assuming that the curvature of the U(1) connection (that we call the electromagnetic field) is constant we compute the first two coefficients of the non-perturbative asymptotic expansion of the heat kernel which are of zero and the first order in Riemannian curvature and of arbitrary order in the electromagnetic field. We apply these results to the study of the effective action in non-perturbative electrodynamics in four dimensions and derive a generalization of the Schwinger's result for the creation of scalar and spinor particles in electromagnetic field induced by the gravitational field. We discover a new infrared divergence in the imaginary part of the effective action due to the gravitational corrections, which seems to be a new physical effect.Comment: LaTeX, 42 page

    Large-D Expansion from Variational Perturbation Theory

    Full text link
    We derive recursively the perturbation series for the ground-state energy of the D-dimensional anharmonic oscillator and resum it using variational perturbation theory (VPT). From the exponentially fast converging approximants, we extract the coefficients of the large-D expansion to higher orders. The calculation effort is much smaller than in the standard field-theoretic approach based on the Hubbard-Stratonovich transformation.Comment: Author Information under http://hbar.wustl.edu/~sbrandt and http://www.theo-phys.uni-essen.de/tp/ags/pelster_di

    Baby and I

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1064/thumbnail.jp

    The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge

    Full text link
    A general analytic procedure is developed for the post-Newtonian limit of f(R)f(R)-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to (v/c)4(v/c)^4 order is shown. Considering the Taylor expansion of a generic function ff it is possible to parameterize the solutions by derivatives of ff. At Newtonian order, (v/c)2(v/c)^2, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential (tttt-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to (v/c)4(v/c)^4 order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit fRf\rightarrow R is considered the f(R)f(R)-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.Comment: 16 pages, 10 figure

    On the origin of the difference between time and space

    Full text link
    We suggest that the difference between time and space is due to spontaneous symmetry breaking. In a theory with spinors the signature of the metric is related to the signature of the Lorentz-group. We discuss a higher symmetry that contains pseudo-orthogonal groups with arbitrary signature as subgroups. The fundamental asymmetry between time and space arises then as a property of the ground state rather than being put into the formulation of the theory a priori. We show how the complex structure of quantum field theory as well as gravitational field equations arise from spinor gravity - a fundamental spinor theory without a metric.Comment: 4 page

    The Existence of Einstein Static Universes and their Stability in Fourth order Theories of Gravity

    Full text link
    We investigate whether or not an Einstein Static universe is a solution to the cosmological equations in f(R)f(R) gravity. It is found that only one class of f(R)f(R) theories admits an Einstein Static model, and that this class is neutrally stable with respect to vector and tensor perturbations for all equations of state on all scales. Scalar perturbations are only stable on all scales if the matter fluid equation of state satisfies cs2>5160.21c_s^2>\frac{\sqrt{5}-1}{6}\approx 0.21. This result is remarkably similar to the GR case, where it was found that the Einstein Static model is stable for cs2>1/5c_s^2>{1/5}.Comment: Minor changes, To appear in PR

    Semiclassical and Quantum Black Holes and their Evaporation, de Sitter and Anti-de Sitter Regimes, Gravitational and String Phase Transitions

    Full text link
    An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For dSdS background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) The last stage of black hole evaporation is a microscopic string state with a finite string critical temperature which decays as usual quantum strings do in non-thermal pure quantum radiation (no information loss).(vi) New lower string bounds are given for the Kerr-Newman black hole angular momentum and charge, which are entirely different from the upper classical bounds. (vii) Semiclassical gravity states undergo a phase transition into quantum string states of the same system, these states are duals of each other in the precise sense of the usual classical-quantum (wave-particle) duality, which is universal irrespective of any symmetry or isommetry of the space-time and of the number or the kind of space-time dimensions.Comment: review paper, no figures. to appear in Int Jour Mod Phys
    corecore